Postgraduate Study Topics

Characterising Bird Flight in Turbulence and Gusts

The project aims to discover how birds perceive and cope with turbulence in order to greatly increase the steadiness of aircraft flight through turbulent air. Initial research showed that by adapting novel sensors, inspired by the sensory functions of birds, the flight performance and safety in turbulence is significantly improved. As part of this proposal, other avian turbulence mitigation strategies will be discovered through wind tunnel experimentation in repeatable gust(s) and turbulence. The discovered avian strategies will be adapted for man-made aircraft, to enable ultra-stable flight in turbulence. Measurements are proposed that will document bird’s motion and the flow fields impinging on the birds during flight in repeatable turbulence. An image tracking system will be used for measuring the wing, body and head motions of the bird using markers on the bird.

Micro-Sensor Development for Turbulence Detection by UAVs

The operational capability of Small unmanned air vehicles (UAVs) is severely limited in windy conditions. The undesirable aircraft motion caused by turbulence in the wind blur image data, curtail the number of flying days per year and result in aborted flights (e.g., crashes). Reducing the size of UAVs increases the challenges of holding a steady flight path. A patented, biomimetic technique of ’feeling’ a way through turbulent air has demonstrated enormous promise, with far steadier flight being demonstrated than is possible with existing inertial-based stabilization:  https://youtu.be/m_2-bblBmQY . The technique involves sensing upstream wind gusts and providing control inputs to counteract the impending undesirable motions much earlier than current technology permits. To-date we have “sensed” the upstream turbulent air using pressure probes forward of each wing. This PhD project proposes to build on this prior success, extending the technique to incorporate improved sensing using new, non-invasive sensors (e.g. micro LIDAR and / or RADAR). The systems will be evaluated via wind-tunnel flight tests of small UAVs in turbulent flows, followed by outdoor flight trials under a range of adverse turbulent winds. 

Bio-inspired Autonomous Soaring Drones

Small Unmanned Air Vehicles (UAVs) suffer from limited range and endurance. However naturally occurring phenomenon in the atmosphere (such as updrafts) can be harvested to sustain flight. The goal of this project is to develop an energy biased path-planning algorithms for real-time implementation on a UAV to minimise energy expenditure. 

 

Turbulence Mitigation for Micro Air Vehicles

Micro Air Vehicles can be particularly sensitive to atmospheric flow disturbances. The undesirable aircraft motion caused by turbulence in the wind blurs image data, curtail the number of flying days per year and result in aborted flights (e.g., crashes). Reducing the size of UAVs increases the challenges of holding a steady flight path. A patented, biomimetic technique of ’feeling’ a way through turbulent air has demonstrated enormous promise, with far steadier flight being demonstrated than is possible with existing inertial-based stabilization:  https://youtu.be/m_2-bblBmQY . The technique involves sensing upstream wind gusts and providing control inputs to counteract the impending undesirable motions much earlier than current technology permits. To-date we have “sensed” the upstream turbulent air using pressure probes forward of each wing allowing a fixed wing UAV to achieve significant improvements in disturbance rejection performance. However there is potential for further improvements through considering non-conventional aircraft designs and actuation techniques enabling steadier MAVs. 

Swarming Drone Flight in Turbulence

Multiple Small Unmanned Air Vehicles (UAVs) are well-suited for formation flight in the Atmospheric Boundary Layer (ABL) for cooperative missions. However their operational capability can be severely limited in windy conditions resulting in mid-air collisions.  A research opportunity exists to characterize effects of gust(s) on a flock of UAVs in RMIT’s Wind Tunnel facility whereby repeatable turbulence can be generated. This understanding can be used to develop suitable flocking/swarming architectures, which best enable a group of UAVs to navigate through turbulent conditions. This project will further evolve to consider suitable to mitigation techniques to ensure safe operation of the drones

Close Menu